- Significant equations sheet is attached.
- Answer all the following questions
- No. of questions : 5
- Total Mark: 90 Marks

Ouestion (1) (12 Marks)

Choose the correct answer:
1- Which of the h-parameters corresponds to r_{e} in a common-base configuration?
a. h_{rb}
b. h_{fb}
c. h_{ib}
d. h_{ob}

2- The loaded voltage gain of an amplifier is always more than the no-load level.
a. True
b. False

3- By what other name(s) are the cutoff frequencies in a frequency response plot called?
a. Corner frequency
b. Break frequency
c. Half-power frequency
d. All of the above

4- A change in frequency by a factor of \qquad is equivalent to 1 octave.
a. 2
b. 10
c. 5
d. 20

5- By how much does the output signal vary for a class AB power amplifier?
a. 360°
b. 180°
c. between 180° and 360°
d. Less than 180°

6- Calculate the effective resistance seen looking into the primary of a $20: 1$ transformer connected to an 8Ω load.
a. $3.2 \mathrm{~K} \Omega$
b. $3.0 \mathrm{~K} \Omega$
c. $2.8 \mathrm{~K} \Omega$
d. $1.8 \mathrm{~K} \Omega$

7- An oscillator differs from an amplifier because the oscillator
a. has more gain
b. requires no input signal
c. requires no dc supply

8- A phase-shift oscillator has
a. three RC circuits
b. three LC circuits
c. a T-type circuit

Question (2) (20 Marks)

1- Sketch the complete hybrid, hybrid π and r_{e} models for a common-emitter $\boldsymbol{n} \boldsymbol{n} \boldsymbol{n}$ transistor. Given $\mathrm{r}_{\mathrm{b}}=3 \Omega, \mathrm{r}_{\pi}=1.6 \mathrm{k} \Omega$, $\mathrm{r}_{\mathrm{u}}=20 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{u}}=1 \mathrm{pF}, \mathrm{C}_{\pi}=5 \mathrm{pF}, \beta=100, \mathrm{~h}_{\mathrm{oe}}=18 \mu \mathrm{~S}$.
2- A four-stage amplifier has a lower 3-dB frequency for an individual stage of $f_{1}=40 \mathrm{~Hz}$. What is the value of f_{1} for this full amplifier?
3- The feedback capacitance of an inverting amplifier is 20 pF . What is the Miller capacitance at the input and the output if the gain of the amplifier is -120 ?
4- Discuss cross-over distortion and state how we can solve it.

Question (3) (22 Marks)

1- For the small-signal amplifier circuit of Fig. 1,
a. Determine r_{e}, Z_{i} and A_{v}.
b. Determine the lower and higher cut-off frequencies.
c. Sketch the low-frequency and the high-frequency responses.
d. Sketch the phase response.

2- For the power amplifier circuit of Fig. 2 and for an input of 10 V rms , calculate
a. The input power
b. The output power
c. The power handled by each output transistor
d. The circuit efficiency

Fig. 1

Fig. 2

Question (4) (16 Marks)

1- What are the conditions required to sustain oscillation? And what is the condition required for oscillation to begin?
2- What are the purposes of a tuned amplifier? Give examples of its applications.
3- A tuned circuit has resonance frequency of 800 kHz and a bandwidth of 10 kHz . What is the value of its Q -factor? What's the sharpness of resonance?
4- Calculate the resonance frequency of a Hartley oscillator with the elements of the tank circuit as $\mathrm{L}_{1}=1.5 \mathrm{mH}$, $\mathrm{L}_{2}=10 \mathrm{mH}$ and $\mathrm{C}=470 \mathrm{pF}$.

Ouestion (5) (20 Marks)

1- Design a two stages RC coupled BJT Audio Amplifier to provide a gain of 60 dB to a typical dynamic microphone signal with frequency ranges from 300 Hz to 3.5 KHz .
2- Design an 850 kHz local oscillator to be used in modulator circuits.

Good Luck,
Dr. Ahmad El-Banna

SIGNIFICANT EQUATIONS

1 Semiconductor Diodes $W=Q V, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}, I_{D}=I_{s}\left(e^{V_{D} / n V_{T}}-1\right), V_{T}=k T / q, T_{\mathrm{K}}=T_{\mathrm{C}}+273^{\circ}$, $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, V_{K} \cong 0.7 \mathrm{~V}(\mathrm{Si}), V_{K} \cong 0.3 \mathrm{~V}(\mathrm{Ge}), V_{K} \cong 1.2 \mathrm{~V}(\mathrm{GaAs}), R_{D}=V_{D} / I_{D}, r_{d}=26 \mathrm{mV} / I_{D}, r_{\mathrm{av}}=\Delta V_{d} /\left.\Delta I_{d}\right|_{\mathrm{pt} . \text { to pt. }}$, $P_{D}=V_{D} I_{D}, T_{C}=\left(\Delta V_{Z} / V_{Z}\right) /\left(T_{1}-T_{0}\right) \times 100 \% /{ }^{\circ} \mathrm{C}$

2 Diode Applications Silicon: $V_{K} \cong 0.7 \mathrm{~V}$, germanium: $V_{K} \cong 0.3 \mathrm{~V}$, GaAs: $V_{K} \cong 1.2 \mathrm{~V}$; half-wave: $V_{\mathrm{dc}}=0.318 V_{m}$; full-wave: $V_{\mathrm{dc}}=0.636 V_{m}$

3 Bipolar Junction Transistors $I_{E}=I_{C}+I_{B}, I_{C}=I_{C_{\text {majority }}}+I_{C O_{\text {minority }},}, I_{C} \cong I_{E}, V_{B E}=0.7 \mathrm{~V}, \alpha_{\mathrm{dc}}=I_{C} / I_{E}, I_{C}=\alpha I_{E}+I_{C B O}$, $\alpha_{\mathrm{ac}}=\Delta I_{C} / \Delta I_{E}, I_{C E O}=I_{C B O} /(1-\alpha), \beta_{\mathrm{dc}}=I_{C} / I_{B}, \beta_{\mathrm{ac}}=\Delta I_{C} / \Delta I_{B}, \alpha=\beta /(\beta+1), \beta=\alpha /(1-\alpha), I_{C}=\beta I_{B}, I_{E}=(\beta+1) I_{B}$, $P_{C_{\max }}=V_{C E} I_{C}$

4 DC Biasing—BJTs In general: $V_{B E}=0.7 \mathrm{~V}, I_{C} \cong I_{E}, I_{C}=\beta I_{B}$; fixed-bias: $I_{B}=\left(V_{C C}-V_{B E}\right) / R_{B}, V_{C E}=V_{C C}-I_{C} R_{C}$, $I_{C_{\text {sat }}}=V_{C C} / R_{C}$; emitter-stabilized: $I_{B}=\left(V_{C C}-V_{B E}\right) /\left(R_{B}+(\beta+1) R_{E}\right), R_{i}=(\beta+1) R_{E}, V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)$, $I_{C_{\text {sat }}}=V_{C C} /\left(R_{C}+R_{E}\right)$; voltage-divider: exact: $R_{\mathrm{Th}}=R_{1} \| R_{2}, E_{\mathrm{Th}}=R_{2} V_{C C} /\left(R_{1}+R_{2}\right), I_{B}=\left(E_{\mathrm{Th}}-V_{B E}\right) /\left(R_{\mathrm{Th}}+(\beta+1) R_{E}\right)$, $V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)$, approximate: $\beta R_{E} \geq 10 R_{2}, V_{B}=R_{2} V_{C C} /\left(R_{1}+R_{2}\right), V_{E}=V_{B}-V_{B E}, I_{C} \cong I_{E}=V_{E} / R_{E}$; voltage-feedback: $I_{B}=\left(V_{C C}-V_{B E}\right) /\left(R_{B}+\beta\left(R_{C}+R_{E}\right)\right)$; common-base: $I_{B}=\left(V_{E E}-V_{B E}\right) / R_{E}$; switching transistors: $t_{\mathrm{on}}=t_{r}+t_{d}, t_{\mathrm{off}}=t_{s}+t_{f}$; stability: $S\left(I_{C O}\right)=\Delta I_{C} / \Delta I_{C O}$; fixed-bias: $S\left(I_{C O}\right)=\beta+1$; emitter-bias: $S\left(I_{C O}\right)=(\beta+1)\left(1+R_{B} / R_{E}\right) /\left(1+\beta+R_{B} / R_{E}\right)$; voltage-divider: $S\left(I_{C O}\right)=(\beta+1)\left(1+R_{\mathrm{Th}} / R_{E}\right) /\left(1+\beta+R_{\mathrm{Th}} / R_{E}\right)$; feedback-bias: $S\left(I_{C O}\right)=(\beta+1)\left(1+R_{B} / R_{C}\right) /\left(1+\beta+R_{B} / R_{C}\right)$, $S\left(V_{B E}\right)=\Delta I_{C} / \Delta V_{B E}$; fixed-bias: $S\left(V_{B E}\right)=-\beta / R_{B}$; emitter-bias: $S\left(V_{B E}\right)=-\beta /\left(R_{B}+(\beta+1) R_{E}\right)$; voltage-divider: $S\left(V_{B E}\right)=$ $-\beta /\left(R_{\mathrm{Th}}+(\beta+1) R_{E}\right)$; feedback bias: $S\left(V_{B E}\right)=-\beta /\left(R_{B}+(\beta+1) R_{C}\right), S(\beta)=\Delta I_{C} / \Delta \beta$; fixed-bias: $S(\beta)=I_{C_{1}} / \beta_{1}$; emitter-bias: $S(\beta)=I_{C_{1}}\left(1+R_{B} / R_{E}\right) /\left(\beta_{1}\left(1+\beta_{2}+R_{B} / R_{E}\right)\right)$; voltage-divider: $S(\beta)=I_{C_{1}}\left(1+R_{\mathrm{Th}} / R_{E}\right) /\left(\beta_{1}\left(1+\beta_{2}+R_{\mathrm{Th}} / R_{E}\right)\right)$; feedback-bias: $S(\beta)=I_{C_{1}}\left(1+R_{B} / R_{C}\right) /\left(\beta_{1}\left(1+\beta_{2}+R_{B} / R_{C}\right)\right), \Delta I_{C}=S\left(I_{C O}\right) \Delta I_{C O}+S\left(V_{B E}\right) \Delta V_{B E}+S(\beta) \Delta \beta$

5 BJT AC Analysis $r_{e}=26 \mathrm{mV} / I_{E}$; CE fixed-bias: $Z_{i} \cong \beta r_{e}, Z_{o} \cong R_{C}, A_{v}=-R_{C} / r_{e}$; voltage-divider bias: $Z_{i}=R_{1}\left\|R_{2}\right\| \beta r_{e}, Z_{o} \cong R_{C}$, $A_{v}=-R_{C} / r_{e}$; CE emitter-bias: $Z_{i} \cong R_{B} \| \beta R_{E}, Z_{o} \cong R_{C}, A_{v} \cong-R_{C} / R_{E}$; emitter-follower: $Z_{i} \cong R_{B} \| \beta R_{E}, Z_{o} \cong r_{e}, A_{v} \cong 1$; common-base: $Z_{i} \cong R_{E} \| r_{e}, Z_{o} \cong R_{C}, A_{v} \cong R_{C} / r_{e}$; collector feedback: $Z_{i} \cong r_{e} /\left(1 / \beta+R_{C} / R_{F}\right), Z_{o} \cong R_{C} \| R_{F}, A_{v}=-R_{C} / r_{e}$; collector dc feedback: $Z_{i} \cong R_{F_{1}}\left\|\beta r_{e}, Z_{o} \cong R_{C}\right\| R_{F_{2}}, A_{v}=-\left(R_{F_{2}} \| R_{C}\right) / r_{e}$; effect of load impedance: $A_{v}=R_{L} A_{v_{\mathrm{NL}}} /\left(R_{L}+R_{o}\right), A_{i}=-A_{v} Z_{i} / R_{L}$; effect of source impedance: $V_{i}=R_{i} V_{s} /\left(R_{i}+R_{s}\right), A_{v_{s}}=R_{i} A_{v_{\mathrm{NL}}} /\left(R_{i}+R_{s}\right), I_{s}=V_{s} /\left(R_{s}+R_{i}\right)$; combined effect of load and source impedance: $A_{v}=R_{L} A_{v_{\mathrm{NL}}} /\left(R_{L}+R_{o}\right), A_{v_{s}}=\left(R_{i} /\left(R_{i}+R_{s}\right)\right)\left(R_{L} /\left(R_{L}+R_{o}\right)\right) A_{v_{\mathrm{NL}}}, A_{i}=-A_{v} R_{i} / R_{L}, A_{i_{s}}=-A_{v_{s}}\left(R_{s}+R_{i}\right) / R_{L}$; cascode connection: $A_{v}=A_{v_{1}} A_{\nu_{2}}$; Darlington connection: $\beta_{D}=\beta_{1} \beta_{2}$; emitter-follower configuration: $I_{B}=\left(V_{C C}-V_{B E}\right) /\left(R_{B}+\beta_{D} R_{E}\right)$, $I_{C} \cong I_{E} \cong \beta_{D} I_{B}, Z_{i}=R_{B} \| \beta_{1} \beta_{2} R_{E}, A_{i}=\beta_{D} R_{B} /\left(R_{B}+\beta_{D} R_{E}\right), A_{v} \cong 1, Z_{o}=r_{e_{1}} / \beta_{2}+r_{e_{2}}$; basic amplifier configuration: $Z_{i}=R_{1}\left\|R_{2}\right\| Z_{i}^{\prime}$, $Z_{i}^{\prime}=\beta_{1}\left(r_{e_{1}}+\beta_{2} r_{e_{2}}\right), A_{i}=\beta_{D}\left(R_{1} \| R_{2}\right) /\left(R_{1} \| R_{2}+Z_{i}^{\prime}\right), A_{v}=\beta_{D} R_{C} / Z_{i}^{\prime}, Z_{o}=R_{C} \| r_{o_{2}}$; feedback pair: $I_{B_{1}}=\left(V_{C C}-V_{B E_{1}}\right) /\left(R_{B}+\beta_{1} \beta_{2} R_{C}\right)$, $Z_{i}=R_{B} \| Z_{i}^{\prime}, Z_{i}^{\prime}=\beta_{1} r_{e_{1}}+\beta_{1} \beta_{2} R_{C}, A_{i}=-\beta_{1} \beta_{2} R_{B} /\left(R_{B}+\beta_{1} \beta_{2} R_{C}\right) A_{v}=\beta_{2} R_{C} /\left(r_{e}+\beta_{2} R_{C}\right) \cong 1, Z_{o} \cong r_{e_{1}} / \beta_{2}$.

6 Field-Effect Transistors $I_{G}=0 \mathrm{~A}, I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}, I_{D}=I_{S}, V_{G S}=V_{P}\left(1-\sqrt{I_{D} / I_{D S S}}\right), I_{D}=I_{D S S} / 4$ (if $\left.V_{G S}=V_{P} / 2\right)$, $I_{D}=I_{D S S} / 2\left(\right.$ if $\left.V_{G S} \cong 0.3 V_{P}\right), P_{D}=V_{D S} I_{D}, r_{d}=r_{o} /\left(1-V_{G S} / V_{P}\right)^{2}$; MOSFET: $I_{D}=k\left(V_{G S}-V_{T}\right)^{2}, k=I_{D(\text { on })} /\left(V_{G S(\mathrm{on})}-V_{T}\right)^{2}$

7 FET Biasing Fixed-bias: $V_{G S}=-V_{G G}, V_{D S}=V_{D D}-I_{D} R_{D}$; self-bias: $V_{G S}=-I_{D} R_{S}, V_{D S}=V_{D D}-I_{D}\left(R_{S}+R_{D}\right), V_{S}=I_{D} R_{S}$; voltage-divider: $V_{G}=R_{2} V_{D D}\left(R_{1}+R_{2}\right), V_{G S}=V_{G}-I_{D} R_{S}, V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)$; common-gate configuration: $V_{G S}=V_{S S}-I_{D} R_{S}$, $V_{D S}=V_{D D}+V_{S S}-I_{D}\left(R_{D}+R_{S}\right)$; special case: $V_{G S_{Q}}=0 V: I_{I_{Q}}=I_{D S S}, V_{D S}=V_{D D}-I_{D} R_{D}, V_{D}=V_{D S}, V_{S}=0 \mathrm{~V}$. enhancement-type MOSFET: $I_{D}=k\left(V_{G S}-V_{G S(\mathrm{Th})}\right)^{2}, k=I_{D(\text { on })} /\left(V_{G S(\mathrm{on})}-V_{G S(\mathrm{Th})}\right)^{2}$; feedback bias: $V_{D S}=V_{G S}, V_{G S}=V_{D D}-I_{D} R_{D}$; voltage-divider: $V_{G}=R_{2} V_{D D} /\left(R_{1}+R_{2}\right), V_{G S}=V_{G}-I_{D} R_{S}$; universal curve: $m=\left|V_{P}\right| / I_{D S S} R_{S}, M=m \times V_{G} /\left|V_{P}\right|, V_{G}=R_{2} V_{D D} /\left(R_{1}+R_{2}\right)$

8 FET Amplifiers $g_{m}=y_{f s}=\Delta I_{D} / \Delta V_{G S}, g_{m 0}=2 I_{D S S} /\left|V_{P}\right|, g_{m}=g_{m 0}\left(1-V_{G S} / V_{P}\right), g_{m}=g_{m 0} \sqrt{I_{D} / I_{D S S}}, r_{d}=1 / y_{o s}=$ $\Delta V_{D S} /\left.\Delta I_{D}\right|_{V_{G S}=\text { constant }}$; fixed-bias: $Z_{i}=R_{G}, Z_{o} \cong R_{D}, A_{v}=-g_{m} R_{D}$; self-bias (bypassed $R \mathrm{~s}$): $Z_{i}=R_{G}, Z_{o} \cong R_{D}, A_{v}=-g_{m} R_{D}$; self-bias (unbypassed $R \mathrm{~s}$): $Z_{i}=R_{G}, Z_{o}=R_{D}, A_{v} \cong-g_{m} R_{D} /\left(1+g_{m} R_{s}\right.$); voltage-divider bias: $Z_{i}=R_{1} \| R_{2}, Z_{o}=R_{D}, A_{v}=-g_{m} R_{D}$; source follower: $Z_{i}=R_{G}, Z_{o}=R_{S} \| 1 / g_{m}, A_{v} \cong g_{m} R_{S} /\left(1+g_{m} R_{S}\right)$; common-gate: $Z_{i}=R_{S} \| 1 / g_{m}, Z_{o} \cong R_{D}, A_{v}=g_{m} R_{D}$; enhancement-type MOSFETs: $g_{m}=2 k\left(V_{G S_{Q}}-V_{G S(\mathrm{Th})}\right)$; drain-feedback configuration: $Z_{i} \cong R_{F} /\left(1+g_{m} R_{D}\right), Z_{o} \cong R_{D}, A_{v} \cong-g_{m} R_{D}$; voltage-divider bias: $Z_{i}=R_{1} \| R_{2}$, $Z_{o} \cong R_{D}, A_{v} \cong-g_{m} R_{D}$.

9 BJT and JFET Frequency Response $\log _{e} a=2.3 \log _{10} a, \log _{10} 1=0, \log _{10} a / b=\log _{10} a-\log _{10} b, \log _{10} 1 / b=-\log _{10} b$, $\log _{10} a b=\log _{10} a+\log _{10} b, G_{\mathrm{dB}}=10 \log _{10} P_{2} / P_{1}, G_{\mathrm{dBm}}=10 \log _{10} P_{2} /\left.1 \mathrm{~mW}\right|_{600 \Omega}, G_{\mathrm{dB}}=20 \log _{10} V_{2} / V_{1}$,
$G_{d B_{T}}=G_{d B_{1}}+G_{d B_{2}}+\cdots+G_{d B_{n}} P_{o_{H P F}}=0.5 P_{o_{\text {mid }}}, \mathrm{BW}=f_{1}-f_{2}$; low frequency (BJT): $f_{L_{S}}=1 / 2 \pi\left(R_{s}+R_{i}\right) C_{s}$,
$f_{L_{C}}=1 / 2 \pi\left(R_{o}+R_{L}\right) C_{C}, f_{L_{E}}=1 / 2 \pi R_{e} C_{E}, R_{e}=R_{E}\left\|\left(R_{s}^{\prime} / \beta+r_{e}\right), R_{s}^{\prime}=R_{s}\right\| R_{1} \| R_{2}$, FET: $f_{L_{G}}=1 / 2 \pi\left(R_{\text {sig }}+R_{i}\right) C_{G}$,
$f_{L_{C}}=1 / 2 \pi\left(R_{o}+R_{L}\right) C_{C}, f_{L_{S}}=1 / 2 \pi R_{e q} C_{S}, R_{e q}=R_{S} \| 1 / g_{m}\left(r_{d} \cong \infty \Omega\right)$; Miller effect: $C_{M_{i}}=\left(1-A_{v}\right) C_{f}, C_{M_{o}}=\left(1-1 / A_{\nu}\right) C_{f}$;
high frequency (BJT): $f_{H_{i}}=1 / 2 \pi R_{\mathrm{Th}_{i}} C_{i}, R_{\mathrm{Th}_{i}}=R_{s}\left\|R_{1}\right\| R_{2} \| R_{i}, C_{i}=C_{w_{i}}+C_{b e}+\left(1-A_{\nu}\right) C_{b c}, f_{H_{o}}=1 / 2 \pi R_{\mathrm{Th}_{o}} C_{o}$,
$R_{\mathrm{Th}_{o}}=R_{C}\left\|R_{L}\right\| r_{o}, C_{o}=C_{W_{o}}+C_{c e}+C_{M_{o}}, f_{\beta} \cong 1 / 2 \pi \beta_{\text {mid }} r_{e}\left(C_{b e}+C_{b c}\right), f_{T}=\beta_{\text {mid }} f_{\beta}$; FET: $f_{H_{i}}=1 / 2 \pi R_{\mathrm{Th}_{i}} C_{i}, R_{\mathrm{Th}_{i}}=R_{\text {sig }} \| R_{G}$,
$C_{i}=C_{W_{i}}+C_{g s}+C_{M_{i}}, C_{M_{i}}=\left(1-A_{\nu}\right) C_{g d} f_{H_{o}}=1 / 2 \pi R_{\mathrm{Th}_{o}} C_{o}, R_{\mathrm{Th}_{o}}=R_{D}\left\|R_{L}\right\| r_{d}, C_{o}=C_{W_{o}}+C_{d s}+C_{M_{o}} ; C_{M_{O}}=\left(1-1 / A_{v}\right) C_{g d} ;$ multistage: $f_{1}^{\prime}=f_{1} / \sqrt{2^{1 / n}-1}, f_{2}^{\prime}=\left(\sqrt{2^{1 / n}-1}\right) f_{2}$; square-wave testing: $f_{H_{i}}=0.35 / t_{r}, \%$ tilt $=P \%=\left(\left(V-V^{\prime}\right) / V\right) \times 100 \%$, $f_{L_{o}}=(P / \pi) f_{s}$

10 Operational Amplifiers $\operatorname{CMRR}=A_{d} / A_{c} ; \operatorname{CMRR}(\log)=20 \log _{10}\left(A_{d} / A_{c}\right)$; constant-gain multiplier: $V_{o} / V_{1}=-R_{f} / R_{1}$; noninverting amplifier: $V_{o} / V_{1}=1+R_{f} / R_{1}$; unity follower: $V_{o}=V_{1}$; summing amplifier: $V_{o}=-\left[\left(R_{f} / R_{1}\right) V_{1}+\left(R_{f} / R_{2}\right) V_{2}+\left(R_{f} / R_{3}\right) V_{3}\right]$; integrator: $v_{o}(t)=-\left(1 / R_{1} C_{1}\right) \int v_{1} d t$

11 Op-Amp Applications Constant-gain multiplier: $A=-R_{f} / R_{1}$; noninverting: $A=1+R_{f} / R_{1}$: voltage summing: $V_{o}=-\left[\left(R_{f} / R_{1}\right) V_{1}+\left(R_{f} / R_{2}\right) V_{2}+\left(R_{f} / R_{3}\right) V_{3}\right]$; high-pass active filter: $f_{o L}=1 / 2 \pi R_{1} C_{1}$; low-pass active filter: $f_{o H}=1 / 2 \pi R_{1} C_{1}$

12 Power Amplifiers

$$
\begin{aligned}
& \text { Power in: } \quad P_{i}=V_{C C} I_{C Q} \\
& \text { power out: } P_{o}=V_{C E} I_{C}=I_{C}^{2} R_{C}=V_{C E}^{2} / R_{C} \mathrm{rms} \\
& =V_{C E} I_{C} / 2=\left(I_{C}^{2} / 2\right) R_{C}=V_{C E}^{2} /\left(2 R_{C}\right) \text { peak } \\
& =V_{C E} I_{C} / 8=\left(I_{C}^{2} / 8\right) R_{C}=V_{C E}^{2} /\left(8 R_{C}\right) \text { peak-to-peak }
\end{aligned}
$$

efficiency: $\% \eta=\left(P_{o} / P_{i}\right) \times 100 \%$; maximum efficiency: Class A, series-fed $=25 \%$; Class A, transformer-coupled $=50 \%$; Class B, push-pull $=78.5 \%$; transformer relations: $V_{2} / V_{1}=N_{2} / N_{1}=I_{1} / I_{2}, R_{2}=\left(N_{2} / N_{1}\right)^{2} R_{1}$; power output: $P_{o}=\left[\left(V_{C E_{\max }}-V_{C E_{\min }}\right)\right.$ $\left.\left(I_{C_{\max }}-I_{C_{\min }}\right)\right] / 8$; class B power amplifier: $P_{i}=V_{C C}\left[(2 / \pi) I_{\text {peak }}\right] ; P_{o}=V_{L}^{2}($ peak $) /\left(2 R_{L}\right) ; \% \eta=(\pi / 4)\left[V_{L}(\right.$ peak $\left.) / V_{C C}\right] \times 100 \%$; $P_{Q}=P_{2 Q} / 2=\left(P_{i}-P_{o}\right) / 2$; maximum $P_{o}=V_{C C}^{2} / 2 R_{L}$; maximum $P_{i}=2 V_{C C}^{2} / \pi R_{L} ;$ maximum $P_{2 Q}=2 V_{C C}^{2} / \pi^{2} R_{L} ; \%$ total harmonic distortion (\% THD) $=\sqrt{D_{2}^{2}+D_{3}^{2}+D_{4}^{2}+\cdots} \times 100 \%$; heat-sink: $T_{J}=P_{D} \theta_{J A}+T_{A}, \theta_{J A}=40^{\circ} \mathrm{C} / \mathrm{W}$ (free air);
$P_{D}=\left(T_{J}-T_{A}\right) /\left(\theta_{J C}+\theta_{C S}+\theta_{S A}\right)$

13 Linear-Digital ICs Ladder network: $V_{o}=\left[\left(D_{0} \times 2^{0}+D_{1} \times 2^{1}+D_{2} \times 2^{2}+\cdots+D_{n} \times 2^{n}\right) / 2^{n}\right] V_{\text {ref }}$; 555 oscillator: $f=1.44\left(R_{A}+2 R_{B}\right) C$; 555 monostable: $T_{\text {high }}=1.1 R_{A} C$; VCO: $f_{o}=\left(2 / R_{1} C_{1}\right)\left[\left(V^{+}-V_{C}\right) / V^{+}\right]$; phaselocked loop (PLL): $f_{o}=0.3 / R_{1} C_{1}, f_{L}= \pm 8 f_{o} / V, f_{C}= \pm(1 / 2 \pi) \sqrt{2 \pi f_{L} /\left(3.6 \times 10^{3}\right) C_{2}}$

14 Feedback and Oscillator Circuits $A_{f}=A /(1+\beta A)$; series feedback; $Z_{i f}=Z_{i}(1+\beta A)$; shunt feedback: $Z_{i f}=Z_{i} /(1+\beta A)$; voltage feedback: $Z_{o f}=Z_{o} /(1+\beta A)$; current feedback; $Z_{o f}=Z_{o}(1+\beta A)$; gain stability: $d A_{f} / A_{f}=1 /(|1+\beta A|)(d A / A)$; oscillator; $\beta A=1$; phase shift: $f=1 / 2 \pi R C \sqrt{6}, \beta=1 / 29, A>29$; FET phase shift: $|A|=g_{m} R_{L}, R_{L}=R_{D} r_{d} /\left(R_{D}+r_{d}\right)$; transistor phase shift: $f=(1 / 2 \pi R C)\left[1 / \sqrt{6+4\left(R_{C} / R\right)}\right], h_{f e}>23+29\left(R_{C} / R\right)+4\left(R / R_{C}\right)$; Wien bridge: $R_{3} / R_{4}=R_{1} / R_{2}+C_{2} / C_{1}, f_{o}=1 / 2 \pi \sqrt{R_{1} C_{1} R_{2} C_{2}} ;$ tuned: $f_{o}=1 / 2 \pi \sqrt{L C_{\mathrm{eq}}}, C_{\mathrm{eq}}=C_{1} C_{2} /\left(C_{1}+C_{2}\right)$, Hartley: $L_{\mathrm{eq}}=L_{1}+L_{2}+2 M, f_{o}=1 / 2 \pi \sqrt{L_{\mathrm{eq}} C}$

15 Power Supplies (Voltage Regulators) Filters: $r=V_{r}(\mathrm{rms}) / V_{\mathrm{dc}} \times 100 \%$, V.R. $=\left(V_{N L}-V_{F L}\right) / V_{F L} \times 100 \%, V_{\mathrm{dc}}=V_{m}-V_{r}(\mathrm{p}-\mathrm{p}) / 2$, $V_{r}(\mathrm{rms})=V_{r}(\mathrm{p}-\mathrm{p}) / 2 \sqrt{3}, V_{r}(\mathrm{rms}) \cong\left(I_{\mathrm{dc}} / 4 \sqrt{3}\right)\left(V_{\mathrm{dc}} / V_{m}\right)$; full-wave, light load $V_{r}(\mathrm{rms})=2.4 I_{\mathrm{dc}} / C, V_{\mathrm{dc}}=V_{m}-4.17 I_{\mathrm{dc}} / C, r=$ $\left(2.4 I_{\mathrm{dc}} C V_{\mathrm{dc}}\right) \times 100 \%=2.4 / R_{L} C \times 100 \%, I_{\text {peak }}=T / T_{1} \times I_{\mathrm{dc}} ; R C$ filter: $V_{\mathrm{dc}}^{\prime}=R_{L} V_{\mathrm{dc}} /\left(R+R_{L}\right), X_{C}=2.653 / C$ (half-wave),$X_{C}=$ $1.326 / C$ (full-wave), $V_{r}^{\prime}(\mathrm{rms})=\left(X_{C} / \sqrt{R^{2}+X_{C}^{2}}\right.$; regulators: $I R=\left(I_{N L}-I_{F L}\right) / I_{F L} \times 100 \%, V_{L}=V_{Z}\left(1+R_{1} / R_{2}\right), V_{o}=$ $V_{\text {ref }}\left(1+R_{2} / R_{1}\right)+I_{\text {adj }} R_{2}$

16 Other Two-Terminal Devices Varactor diode: $C_{T}=C(0) /\left(1+\left|V_{r} / V_{T}\right|\right)^{n}, T C_{C}=\left(\Delta C / C_{o}\left(T_{1}-T_{0}\right)\right) \times 100 \%$; photodiode: $W=h f, \lambda=v / f, 1 \mathrm{~lm}=1.496 \times 10^{-10} \mathrm{~W}, 1 \AA=10^{-10} \mathrm{~m}, 1 \mathrm{fc}=1 \mathrm{~m} / \mathrm{ft}^{2}=1.609 \times 10^{-9} \mathrm{~W} / \mathrm{m}^{2}$

17 pnpn and Other Devices Diac: $V_{B R_{1}}=V_{B R_{2}} \pm 0.1 V_{B R_{2}}$ UJT: $R_{B B}=\left.\left(R_{B_{1}}+R_{B_{2}}\right)\right|_{I_{E}=0}, V_{R_{B_{1}}}=\left.\eta V_{B B}\right|_{I_{E}=0}$,
$\eta=R_{B_{1}} /\left.\left(R_{B_{1}}+R_{B_{2}}\right)\right|_{I_{E}=0}, V_{P}=\eta V_{B B}+V_{D}$; phototransistor: $I_{C} \cong h_{f e} I_{\lambda} ;$ PUT: $\eta=R_{B_{1}} /\left(R_{B_{1}}+R_{B_{2}}\right), V_{P}=\eta V_{B B}+V_{D}$

