Benha University Faculty of Engineering at Shoubra Electrical Engineering Department Third Year (Communications)

Final Term Exam (Fall 2014) **Date: Sunday (28/12/2014) Subject: Electronic Circuits (A)**

Duration: 4 hours

• No. of questions: 5 • Total Mark: 90 Marks

Significant equations sheet is attached.

Answer all the following questions

Q

<u>Questic</u>	on (1)	(12 Marks)							
		orrect answer:		1.4		1	c		
1-		of the h-para		-				guration?	
	a.	h_{rb}	b. h _{fb}		c. h _{ib}		d. h _{ob}		
2-	The loaded voltage gain of an amplifier is always more than the no-load level.								
	a.	True	b. False						
3-	By what other name(s) are the cutoff frequencies in a frequency response plot called?								
	a.	a. Corner frequency		b. Break frequency c. Hal			power fr	equency	d. All of the above
4-	A change in frequency by a factor of is equivalent to 1 octave.								
		2		c. 5					
5-	By how much does the output signal vary for a class AB power amplifier?								
	•	360°	-	-		-	-		ss than 180°
6-	Calculate the effective resistance seen looking into the primary of a 20:1 transformer connected to an 80								
Ü	load.		, • 1 • 515 • 6		0111118 11110	vii v		_ 0.1 0.00151	01111 0 1 0 01111 0000 1 0 W 11 0=
		3.2 KO	b 30k	0	c 28	KO	d	. 1.8 KΩ	
7_		a. $3.2 \text{ K}\Omega$ b. $3.0 \text{ K}\Omega$ c. $2.8 \text{ K}\Omega$ d. $1.8 \text{ K}\Omega$ An oscillator differs from an amplifier because the oscillator							
	a. has more gain b. requires no input signal c. requires no dc supply								
		· ·	o. requires no input signar			C	. requires i	io de suppry	
8-	-	se-shift oscilla		1 1 10				,	
	a.	a. three RC circuits		b. three LC circuits			c. a 1-type circuit		
Questic	on (2)	(20 Marks)							
			vbrid hvb	rid π and r. 1	nodels for	a commo	n-emitter i	nnn transiste	or. Given $r_b = 3\Omega$. $r_{\pi} = 1.6 k\Omega$

<u>0</u>

- $r_u = 20M\Omega$, $C_u = 1pF$, $C_{\pi} = 5pF$, $\beta = 100$, $h_{oe} = 18 \mu S$.
- 2- A four-stage amplifier has a lower 3-dB frequency for an individual stage of $f_1 = 40$ Hz. What is the value of f_1 for this full amplifier?
- 3- The feedback capacitance of an inverting amplifier is 20 pF. What is the Miller capacitance at the input and the output if the gain of the amplifier is -120?
- 4- Discuss cross-over distortion and state how we can solve it.

Question (3) (22 Marks)

- 1- For the small-signal amplifier circuit of Fig. 1,
 - a. Determine r_e , Z_i and A_v .
 - b. Determine the lower and higher cut-off frequencies.
 - c. Sketch the low-frequency and the high-frequency responses.
 - d. Sketch the phase response.
- 2- For the power amplifier circuit of Fig. 2 and for an input of 10 V rms, calculate
 - a. The input power
 - b. The output power
 - c. The power handled by each output transistor
 - d. The circuit efficiency

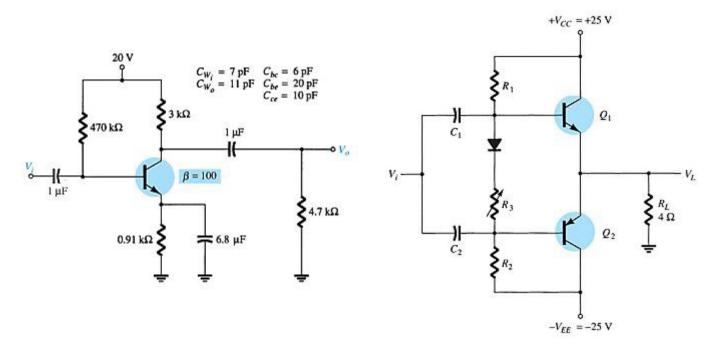


Fig. 1 Fig. 2

Question (4) (16 Marks)

- 1- What are the conditions required to sustain oscillation? And what is the condition required for oscillation to begin?
- 2- What are the purposes of a tuned amplifier? Give examples of its applications.
- 3- A tuned circuit has resonance frequency of 800 kHz and a bandwidth of 10 kHz. What is the value of its Q-factor? What's the sharpness of resonance?
- 4- Calculate the resonance frequency of a Hartley oscillator with the elements of the tank circuit as L_1 = 1.5 mH, L_2 =10 mH and C=470pF.

Question (5) (20 Marks)

- 1- Design a two stages RC coupled BJT Audio Amplifier to provide a gain of 60 dB to a typical dynamic microphone signal with frequency ranges from 300 Hz to 3.5 KHz.
- 2- Design an 850 kHz local oscillator to be used in modulator circuits.

Good Luck, Dr. Ahmad El-Banna

SIGNIFICANT EQUATIONS

- $\begin{array}{lll} \textbf{1} & \textbf{Semiconductor Diodes} & W = QV, 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J}, \ I_D = I_s \, (e^{V_D/nV_T} 1), \ V_T = kT/q, \ T_K = T_C + 273^\circ, \\ k = 1.38 \times 10^{-23} \, \text{J/K}, \ V_K \cong 0.7 \, \text{V (Si)}, \ V_K \cong 0.3 \, \text{V(Ge)}, \ V_K \cong 1.2 \, \text{V (GaAs)}, \ R_D = V_D/I_D, \ r_d = 26 \, \text{mV/}I_D, \ r_{\text{av}} = \Delta V_d/\Delta I_d \big|_{\text{pt. to pt.}}, \\ P_D = V_D I_D, \ T_C = (\Delta V_Z/V_Z)/(T_1 T_0) \times 100\%/^\circ \text{C} \end{array}$
- **2 Diode Applications** Silicon: $V_K \cong 0.7 \text{ V}$, germanium: $V_K \cong 0.3 \text{ V}$, GaAs: $V_K \cong 1.2 \text{ V}$; half-wave: $V_{dc} = 0.318 V_m$; full-wave: $V_{dc} = 0.636 V_m$
- 3 Bipolar Junction Transistors $I_E = I_C + I_B$, $I_C = I_{C_{\text{majority}}} + I_{CO_{\text{minority}}}$, $I_C \cong I_E$, $V_{BE} = 0.7 \text{ V}$, $\alpha_{\text{dc}} = I_C/I_E$, $I_C = \alpha I_E + I_{CBO}$, $\alpha_{\text{ac}} = \Delta I_C/\Delta I_E$, $I_{CEO} = I_{CBO}/(1-\alpha)$, $\beta_{\text{dc}} = I_C/I_B$, $\beta_{\text{ac}} = \Delta I_C/\Delta I_B$, $\alpha = \beta/(\beta+1)$, $\beta = \alpha/(1-\alpha)$, $I_C = \beta I_B$, $I_E = (\beta+1)I_B$, $P_{C_{\text{max}}} = V_{CE}I_C$
- 4 DC Biasing—BJTs In general: $V_{BE} = 0.7 \text{ V}$, $I_C \cong I_E$, $I_C = \beta I_B$; fixed-bias: $I_B = (V_{CC} V_{BE})/R_B$, $V_{CE} = V_{CC} I_{CRC}$, $I_{C_{\text{sat}}} = V_{CC}/R_C$; emitter-stabilized: $I_B = (V_{CC} V_{BE})/(R_B + (\beta + 1)R_E)$, $R_i = (\beta + 1)R_E$, $V_{CE} = V_{CC} I_C(R_C + R_E)$, $I_{C_{\text{sat}}} = V_{CC}/(R_C + R_E)$; voltage-divider: exact: $R_{\text{Th}} = R_1 \| R_2$, $E_{\text{Th}} = R_2 V_{CC}/(R_1 + R_2)$, $I_B = (E_{\text{Th}} V_{BE})/(R_{\text{Th}} + (\beta + 1)R_E)$, $V_{CE} = V_{CC} I_C(R_C + R_E)$, approximate: $\beta R_E \ge 10R_2$, $V_B = R_2 V_{CC}/(R_1 + R_2)$, $V_E = V_B V_{BE}$, $I_C \cong I_E = V_E/R_E$; voltage-feedback: $I_B = (V_{CC} V_{BE})/(R_B + \beta(R_C + R_E))$; common-base: $I_B = (V_{EE} V_{BE})/R_E$; switching transistors: $t_{\text{on}} = t_r + t_d$, $t_{\text{off}} = t_s + t_f$; stability: $S(I_{CO}) = \Delta I_C/\Delta I_{CO}$; fixed-bias: $S(I_{CO}) = \beta + 1$; emitter-bias: $S(I_{CO}) = (\beta + 1)(1 + R_B/R_E)/(1 + \beta + R_B/R_E)$; voltage-divider: $S(I_{CO}) = (\beta + 1)(1 + R_B/R_E)/(1 + \beta + R_B/R_C)$, $S(V_{BE}) = \Delta I_C/\Delta V_{BE}$; fixed-bias: $S(V_{BE}) = -\beta/(R_B + (\beta + 1)R_E)$; feedback bias: $S(V_{BE}) = -\beta/(R_B + (\beta + 1)R_E)$; feedback bias: $S(\beta) = I_{C_1}(1 + R_B/R_E)/(\beta_1(1 + \beta_2 + R_B/R_E))$; voltage-divider: $S(\beta) = I_{C_1}(1 + R_{Th}/R_E)/(\beta_1(1 + \beta_2 + R_{Th}/R_E))$; feedback-bias: $S(\beta) = I_{C_1}(1 + R_B/R_C)/(\beta_1(1 + \beta_2 + R_B/R_C))$, $\Delta I_C = S(I_{CO}) \Delta I_{CO} + S(V_{BE}) \Delta V_{BE} + S(\beta) \Delta \beta$
- **BJT AC Analysis** $r_e = 26 \text{ mV}/I_E$; CE fixed-bias: $Z_i \cong \beta r_e$, $Z_o \cong R_C$, $A_v = -R_C/r_e$; voltage-divider bias: $Z_i = R_1 \| R_2 \| \beta r_e$, $Z_o \cong R_C$, $A_v = -R_C/r_e$; cE emitter-bias: $Z_i \cong R_B \| \beta R_E$, $Z_o \cong R_C$, $A_v \cong -R_C/R_E$; emitter-follower: $Z_i \cong R_B \| \beta R_E$, $Z_o \cong r_e$, $A_v \cong 1$; common-base: $Z_i \cong R_E \| r_e$, $Z_o \cong R_C$, $A_v \cong R_C/r_e$; collector feedback: $Z_i \cong r_e/(1/\beta + R_C/R_F)$, $Z_o \cong R_C \| R_F$, $A_v = -R_C/r_e$; collector dc feedback: $Z_i \cong R_{F_1} \| \beta r_e$, $Z_o \cong R_C \| R_{F_2}$, $A_v = -(R_{F_2} \| R_C)/r_e$; effect of load impedance: $A_v = R_L A_{v_{NL}}/(R_L + R_o)$, $A_i = -A_v Z_i/R_L$; effect of source impedance: $V_i = R_i V_s/(R_i + R_s)$, $V_s = R_i A_{v_{NL}}/(R_i + R_s)$, $V_s = V_s/(R_s + R_i)$; combined effect of load and source impedance: $A_v = R_L A_{v_{NL}}/(R_L + R_o)$, $A_{v_s} = (R_i/(R_i + R_s))(R_L/(R_L + R_o))A_{v_{NL}}$, $A_i = -A_v R_i/R_L$, $A_{i_s} = -A_{v_s}(R_s + R_i)/R_L$; cascode connection: $A_v = R_L A_{v_{NL}}/(R_L + R_o)$, $A_{v_s} = (R_i/(R_i + R_s))(R_L/(R_L + R_o))A_{v_{NL}}$, $A_i = -A_v R_i/R_L$, $A_{i_s} = -A_{v_s}(R_s + R_i)/R_L$; cascode connection: $A_v = A_{v_1} A_{v_2}$; Darlington connection: $\beta_D = \beta_1 \beta_2$; emitter-follower configuration: $I_B = (V_{CC} V_{BE})/(R_B + \beta_D R_E)$, $I_C \cong I_E \cong \beta_D I_B$, $I_C = R_B \| \beta_1 \beta_2 R_E$, $I_C = R_B \| \beta_1 \beta_2 R$
- **6** Field-Effect Transistors $I_G = 0$ A, $I_D = I_{DSS}(1 V_{GS}/V_P)^2$, $I_D = I_S$, $V_{GS} = V_P (1 \sqrt{I_D/I_{DSS}})$, $I_D = I_{DSS}/4$ (if $V_{GS} = V_P/2$), $I_D = I_{DSS}/2$ (if $V_{GS} \cong 0.3 \ V_P$), $V_D = V_{DS}I_D$, $V_D = V_{DS}I_D$, $V_D = V_D I_D$, $V_D = V_$
- **FET Biasing** Fixed-bias: $V_{GS} = -V_{GG}$, $V_{DS} = V_{DD} I_D R_D$; self-bias: $V_{GS} = -I_D R_S$, $V_{DS} = V_{DD} I_D (R_S + R_D)$, $V_S = I_D R_S$; voltage-divider: $V_G = R_2 V_{DD}/(R_1 + R_2)$, $V_{GS} = V_G I_D R_S$, $V_{DS} = V_{DD} I_D (R_D + R_S)$; common-gate configuration: $V_{GS} = V_{SS} I_D R_S$, $V_{DS} = V_{DD} + V_{SS} I_D (R_D + R_S)$; special case: $V_{GS_Q} = 0$ V: $I_{I_Q} = I_{DSS}$, $V_{DS} = V_{DD} I_D R_D$, $V_D = V_{DS}$, $V_S = 0$ V. enhancement-type MOSFET: $I_D = k(V_{GS} V_{GS(Th)})^2$, $k = I_{D(on)}/(V_{GS(on)} V_{GS(Th)})^2$; feedback bias: $V_{DS} = V_{GS}$, $V_{GS} = V_{DD} I_D R_D$; voltage-divider: $V_G = R_2 V_{DD}/(R_1 + R_2)$, $V_{GS} = V_G I_D R_S$; universal curve: $m = |V_P|/I_{DSS}R_S$, $M = m \times V_G/|V_P|$, $V_G = R_2 V_{DD}/(R_1 + R_2)$
- **8 FET Amplifiers** $g_m = y_{fs} = \Delta I_D/\Delta V_{GS}, g_{m0} = 2I_{DSS}/|V_P|, g_m = g_{m0}(1 V_{GS}/V_P), g_m = g_{m0}\sqrt{I_D/I_{DSS}}, r_d = 1/y_{os} = \Delta V_{DS}/\Delta I_D|_{V_{GS}=\text{constant}};$ fixed-bias: $Z_i = R_G, Z_o \cong R_D, A_v = -g_m R_D$; self-bias (bypassed R_S): $Z_i = R_G, Z_o \cong R_D, A_v = -g_m R_D$; self-bias (unbypassed R_S): $Z_i = R_G, Z_o = R_D, A_v \cong -g_m R_D$; source follower: $Z_i = R_G, Z_o = R_S \parallel 1/g_m, A_v \cong g_m R_S/(1 + g_m R_S);$ common-gate: $Z_i = R_S \parallel 1/g_m, Z_o \cong R_D, A_v = g_m R_D;$ enhancement-type MOSFETs: $g_m = 2k(V_{GSQ} V_{GS(Th)});$ drain-feedback configuration: $Z_i \cong R_F/(1 + g_m R_D), Z_o \cong R_D, A_v \cong -g_m R_D;$ voltage-divider bias: $Z_i = R_1 \parallel R_2, Z_o \cong R_D, A_v \cong -g_m R_D$.

- $\begin{array}{lll} \textbf{9} & \textbf{BJT and JFET Frequency Response} & \log_e a = 2.3 \log_{10} a, \log_{10} 1 = 0, \log_{10} a/b = \log_{10} a \log_{10} b, \log_{10} 1/b = -\log_{10} b, \\ \log_{10} ab = \log_{10} a + \log_{10} b, G_{\text{dB}} = 10 \log_{10} P_2/P_1, G_{\text{dBm}} = 10 \log_{10} P_2/1 \text{ mW}|_{600 \ \Omega}, G_{\text{dB}} = 20 \log_{10} V_2/V_1, \\ G_{dB_T} = G_{dB_1} + G_{dB_2} + \cdots + G_{dB_n} P_{o_{HPF}} = 0.5 P_{o_{\text{mid}}}, \text{BW} = f_1 f_2; \text{low frequency (BJT): } f_{L_S} = 1/2\pi (R_s + R_i) C_s, \\ f_{L_C} = 1/2\pi (R_o + R_L) C_C, f_{L_E} = 1/2\pi R_{eC_E}, R_e = R_E \| (R_s'/\beta + r_e), R_s' = R_s \| R_1 \| R_2, \text{FET: } f_{L_G} = 1/2\pi (R_{\text{sig}} + R_i) C_G, \\ f_{L_C} = 1/2\pi (R_o + R_L) C_C, f_{L_S} = 1/2\pi R_{eq} C_S, R_{eq} = R_S \| 1/g_m (r_d \cong \infty \Omega); \text{Miller effect: } C_{M_i} = (1 A_v) C_f, C_{M_o} = (1 1/A_v) C_f; \\ \text{high frequency (BJT): } f_{H_i} = 1/2\pi R_{\text{Th}_i} C_i, R_{\text{Th}_i} = R_s \| R_1 \| R_2 \| R_i, C_i = C_{w_i} + C_{be} + (1 A_v) C_{bc}, f_{H_o} = 1/2\pi R_{\text{Th}_o} C_o, \\ R_{\text{Th}_o} = R_C \| R_L \| r_o, C_o = C_{W_o} + C_{ce} + C_{M_o}, f_\beta \cong 1/2\pi \beta_{\text{mid}} r_e (C_{be} + C_{bc}), f_T = \beta_{\text{mid}} f_\beta; \text{FET: } f_{H_i} = 1/2\pi R_{\text{Th}_i} C_i, R_{\text{Th}_i} = R_{\text{sig}} \| R_G, \\ C_i = C_{W_i} + C_{gs} + C_{M_i}, C_{M_i} = (1 A_v) C_{gd} f_{H_o} = 1/2\pi R_{\text{Th}_o} C_o, R_{\text{Th}_o} = R_D \| R_L \| r_d, C_o = C_{W_o} + C_{ds} + C_{M_o}; C_{M_o} = (1 1/A_v) C_{gd}; \\ \text{multistage: } f_1' = f_1/\sqrt{2^{1/n} 1}, f_2' = (\sqrt{2^{1/n} 1}) f_2; \text{ square-wave testing: } f_{H_i} = 0.35/t_r, \% \text{ tilt } = P\% = ((V V')/V) \times 100\%, \\ f_{L_o} = (P/\pi) f_s \end{aligned}$
- **10** Operational Amplifiers CMRR = A_d/A_c ; CMRR(log) = $20 \log_{10}(A_d/A_c)$; constant-gain multiplier: $V_o/V_1 = -R_f/R_1$; noninverting amplifier: $V_o/V_1 = 1 + R_f/R_1$; unity follower: $V_o = V_1$; summing amplifier: $V_o = -[(R_f/R_1)V_1 + (R_f/R_2)V_2 + (R_f/R_3)V_3]$; integrator: $V_o(t) = -(1/R_1C_1)\int_{V_1}dt$
- **11 Op-Amp Applications** Constant-gain multiplier: $A = -R_f/R_1$; noninverting: $A = 1 + R_f/R_1$: voltage summing: $V_o = -[(R_f/R_1)V_1 + (R_f/R_2)V_2 + (R_f/R_3)V_3]$; high-pass active filter: $f_{oL} = 1/2\pi R_1 C_1$; low-pass active filter: $f_{oH} = 1/2\pi R_1 C_1$

12 Power Amplifiers

Power in: $P_i = V_{CC}I_{CQ}$ power out: $P_o = V_{CE}I_C = I_C^2R_C = V_{CE}^2/R_C$ rms $= V_{CE}I_C/2 = (I_C^2/2)R_C = V_{CE}^2/(2R_C)$ peak $= V_{CE}I_C/8 = (I_C^2/8)R_C = V_{CE}^2/(8R_C)$ peak-to-peak

efficiency: $\%\eta=(P_o/P_i)\times 100\%$; maximum efficiency: Class A, series-fed = 25%; Class A, transformer-coupled = 50%; Class B, push-pull = 78.5%; transformer relations: $V_2/V_1=N_2/N_1=I_1/I_2, R_2=(N_2/N_1)^2R_1$; power output: $P_o=[(V_{CE_{\max}}-V_{CE_{\min}})(I_{C_{\max}}-I_{C_{\min}})]/8$; class B power amplifier: $P_i=V_{CC}[(2/\pi)I_{\text{peak}}]$; $P_o=V_L^2(\text{peak})/(2R_L)$; $\%\eta=(\pi/4)[V_L(\text{peak})/V_{CC}]\times 100\%$; $P_Q=P_{2Q}/2=(P_i-P_o)/2$; maximum $P_o=V_{CC}^2/2R_L$; maximum $P_i=2V_{CC}^2/\pi R_L$; maximum $P_{2Q}=2V_{CC}^2/\pi^2 R_L$; % total harmonic distortion (% THD) = $\sqrt{D_2^2+D_3^2+D_4^2+\cdots}\times 100\%$; heat-sink: $T_J=P_D\theta_{JA}+T_A, \theta_{JA}=40$ °C/W (free air); $P_D=(T_J-T_A)/(\theta_{JC}+\theta_{CS}+\theta_{SA})$

- 13 Linear-Digital ICs Ladder network: $V_o = [(D_0 \times 2^0 + D_1 \times 2^1 + D_2 \times 2^2 + \cdots + D_n \times 2^n)/2^n]V_{\text{ref}};$ 555 oscillator: $f = 1.44(R_A + 2R_B)C$; 555 monostable: $T_{\text{high}} = 1.1R_AC$; VCO: $f_o = (2/R_1C_1)[(V^+ V_C)/V^+];$ phase-locked loop (PLL): $f_o = 0.3/R_1C_1, f_L = \pm 8f_o/V, f_C = \pm (1/2\pi)\sqrt{2\pi f_L/(3.6 \times 10^3)C_2}$
- **14 Feedback and Oscillator Circuits** $A_f = A/(1 + \beta A)$; series feedback; $Z_{if} = Z_i(1 + \beta A)$; shunt feedback: $Z_{if} = Z_i/(1 + \beta A)$; voltage feedback: $Z_{of} = Z_o/(1 + \beta A)$; current feedback; $Z_{of} = Z_o/(1 + \beta A)$; gain stability: $dA_f/A_f = 1/(|1 + \beta A|)(dA/A)$; oscillator; $\beta A = 1$; phase shift: $f = 1/2\pi RC\sqrt{6}$, $\beta = 1/29$, A > 29; FET phase shift: $|A| = g_m R_L$, $R_L = R_D r_d/(R_D + r_d)$; transistor phase shift: $f = (1/2\pi RC)[1/\sqrt{6 + 4(R_C/R)}]$, $h_{fe} > 23 + 29(R_C/R) + 4(R/R_C)$; Wien bridge: $R_3/R_4 = R_1/R_2 + C_2/C_1$, $f_o = 1/2\pi\sqrt{R_1C_1R_2C_2}$; tuned: $f_o = 1/2\pi\sqrt{LC_{eq}}$, $C_{eq} = C_1C_2/(C_1 + C_2)$, Hartley: $L_{eq} = L_1 + L_2 + 2M$, $f_o = 1/2\pi\sqrt{Lc_{eq}C}$
- 15 Power Supplies (Voltage Regulators) Filters: $r = V_r(\text{rms})/V_{\text{dc}} \times 100\%$, V.R. = $(V_{NL} V_{FL})/V_{FL} \times 100\%$, $V_{\text{dc}} = V_m V_r(\text{p-p})/2$, $V_r(\text{rms}) = V_r(\text{p-p})/2\sqrt{3}$, $V_r(\text{rms}) \cong (I_{\text{dc}}/4\sqrt{3})(V_{\text{dc}}/V_m)$; full-wave, light load $V_r(\text{rms}) = 2.4I_{\text{dc}}/C$, $V_{\text{dc}} = V_m 4.17I_{\text{dc}}/C$, $r = (2.4I_{\text{dc}}CV_{\text{dc}}) \times 100\% = 2.4/R_LC \times 100\%$, $I_{\text{peak}} = T/T_1 \times I_{\text{dc}}$; RC filter: $V_{\text{dc}}' = R_L V_{\text{dc}}/(R + R_L)$, $X_C = 2.653/C$ (half-wave), $X_C = 1.326/C$ (full-wave), $V_r'(\text{rms}) = (X_C/\sqrt{R^2 + X_C^2})$; regulators: $IR = (I_{NL} I_{FL})/I_{FL} \times 100\%$, $V_L = V_Z(1 + R_1/R_2)$, $V_o = V_{\text{ref}}(1 + R_2/R_1) + I_{\text{adj}}R_2$
- **16 Other Two-Terminal Devices** Variator diode: $C_T = C(0)/(1 + |V_r/V_T|)^n$, $TC_C = (\Delta C/C_o(T_1 T_0)) \times 100\%$; photodiode: $W = \mathcal{U}f$, $\lambda = v/f$, $1 \text{ lm} = 1.496 \times 10^{-10} \text{ W}$, $1 \text{ Å} = 10^{-10} \text{ m}$, $1 \text{ fc} = 1 \text{ lm/ft}^2 = 1.609 \times 10^{-9} \text{ W/m}^2$
- 17 pnpn and Other Devices Diac: $V_{BR_1} = V_{BR_2} \pm 0.1 \ V_{BR_2} \ \text{UJT}$: $R_{BB} = (R_{B_1} + R_{B_2})|_{I_E = 0}, V_{R_{B_1}} = \eta V_{BB}|_{I_E = 0}, V_{BB_1} = \eta V_{BB}|_{I_E = 0}, V_{BB_1} = \eta V_{BB_1}|_{I_E = 0}, V_{BB_1} = \eta V_{BB_2}|_{I_E = 0}, V_{BB_2} = \eta V_{BB_2}|_{I_E = 0}, V_{BB_1} = \eta V_{BB_2}|_{I_E = 0}, V_{BB_2} = \eta V_{BB_2}|_{I_E = 0}, V_{BB_1} = \eta V_{BB_2}|_{I_E = 0}, V_{BB_2} = \eta V_{BB_$